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Introduction
Today we will work through an intuitive proof of a theorem by Heath
and Feinstein, but first we need some background. Update: For the
final version of this work please see my paper (An inductive proof of
the Feinstein-Heath Swiss cheese “classicalisation” Theorem).

Definition
Let D be the set of all open discs and complements of closed discs in
the complex plane.

(a) A Swiss cheese set X is a compact plane set produced by
deleting from the complex plane the elements of a collection
D̃ := D ∪ {C\∆}, where D is a set of open discs in the complex
plane and ∆ is a closed disc.

(b) A Swiss cheese d : S → D is a map from a subset S ⊆ N∪ {0} in
to D such that d(S) is a collection that defines a Swiss cheese set
where d(S\{0}) is a set of open discs and d(0) is the
complement of a closed disc.
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Introduction

When used as a domain, Swiss cheese sets provide a good source of
examples in the theory of uniform algebras and rational approximation
but we will not discuss that here.

Definition

(a) A Swiss cheese d : S → D is said to be classical if the closures
of the elements in d(S) are pairwise disjoint.

(b) For a Swiss cheese d : S → D we let Xd denote the Swiss cheese
set defined by the collection d(S).

(c) A Swiss cheese d : S → D is said to have Heath’s condition
when

∑
n∈S\{0} r(d(n)) = r(∆)− δ for some δ > 0, where

∆ := C\d(0) and r(d(n)) is the radius of the disc d(n).
(d) Define H := {h : h is a Swiss cheese with Heath’s condition}.

With these definitions to hand we now look at Heath’s theorem on
Swiss cheese sets which is the central issue for us.
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Introduction

Heath’s theorem on Swiss cheese sets.

Theorem
For every Swiss cheese h ∈ H there is a classical Swiss cheese
h

′ ∈ H with Xh′ ⊆ Xh.

The existing Zorn’s lemma proof by Heath and Feinstein is elegant.
However the proof presented here is perhaps more intuitive giving a
nice example of the application of transfinite induction and the use of
cardinality in proof.
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Proof. The map f : H → H.

At the heart of the proof is a completely defined map f : H → H which
we now define case by case.

(1) If h ∈ H is a classical Swiss cheese then define f (h) := h.
(2) If h ∈ H is not classical then for h : S → D let

I := {(n,m) ∈ S2 : h̄(n) ∩ h̄(m) 6= ∅,n 6= m}.

We then have lexicographic ordering on I given by

(n,m) . (n
′
,m

′
) iff n < n

′
or (n = n

′
and m ≤ m

′
).

Since this is a well-ordering on I, let (n,m) be the minimum
element of I and hence note that m 6= 0.
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Proof. The map f : H → H.

(2) From the last slide, (n,m) is the minimum in I. Since h ∈ H we
have

∑
k∈S\{0} r(h(k)) = r(C\h(0))− δ for some δ > 0.

Now, by a lemma of Heath, there exists E ∈ D with
h(n) ∪ h(m) ⊆ E such that for f (h) : S\{m} → D,

f (h)(k) :=

{
h(k) for k 6= n
E for k = n

, k ∈ S\{m}

we have
∑

k∈S\{0,m} r(f (h)(k)) ≤ r(C\f (h)(0))− δ and so
f (h) ∈ H.
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Proof. The map f : H → H.

Properties of f : H → H:

(a) Now f : H → H is such that for h : S → D 7→ f (h) : S
′ → D we

have S
′ ⊆ S with S

′
= S iff h is classical.

(b) Further, for the Swiss cheese sets given by Xh := C\ ∪n∈S h(n) we
have Xf (h) ⊆ Xh noting that for n ∈ S

′
we have h(n) ⊆ f (h)(n).

Our aim is to prove that for every h ∈ H there is a classical Swiss
cheese h

′ ∈ H with Xh′ ⊆ Xh.

To this end we will use f : H → H to construct an ordinal sequence of
Swiss cheeses and then apply a cardinality argument to show that this
ordinal sequence must stabilise at a classical Swiss cheese.
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Proof. A sequence through f : H → H.

Notation
Let ω be the first non-finite ordinal and let h ∈ H, h : S → D.

Denote hα := f ◦ f ◦ · · · ◦ f (h) applying f α times for α < ω and denote
the domain of hα by Sα.

So by the properties of f : H → H we obtain a nested sequence of
Swiss cheese sets:

Xh ⊇ Xh1 ⊇ Xh2 ⊇ · · ·

and a corresponding nested sequence of subsets of N ∪ {0}, each
including 0:

S ⊇ S1 ⊇ S2 ⊇ · · · where Sα = Sα+1 iff hα is classical.

We need to extend these sequences so that they become ordinal
sequences that preserve the existing properties.
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Proof. An ordinal sequence.

Extending the sequence to all ordinals.

Definition

(a) If α is a successor ordinal then define hα := f (hα−1).

(b) If α is a limit ordinal then define hα : Sα → D by,

n 7→ ∪β<αhβ(n) with Sα := ∩β<αSβ.

We need to show that hα is in H and that it has the required properties.
We use transfinite induction.
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Proof. An ordinal sequence.

Transfinite induction.
For α an ordinal number let P(α) be the proposition that:

(α,1) hα ∈ H, i.e.

(α,1.1) 0 ∈ Sα,
(α,1.2) hα(0) is the complement of a closed disc and

hα(n) is an open disc for n ∈ Sα\{0},
(α,1.3) hα has Heath’s condition with parameter δhα ≥ δh.

(α,2) ∀β ≤ α we have Sα ⊆ Sβ,
(α,3) ∀β ≤ α we have Xhα ⊆ Xhβ ,
(α,4) ∀n ∈ Sα we have {hβ(n) : β ≤ α} is a nested increasing family.

Base case: for h0 := h ∈ H, P(0) is immediate.
IH: inductive hypothesis, ∀β < α, P(β) holds.
Inductive step: for α a successor ordinal, P(α) is immediate.
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hα(n) is an open disc for n ∈ Sα\{0},
(α,1.3) hα has Heath’s condition with parameter δhα ≥ δh.

(α,2) ∀β ≤ α we have Sα ⊆ Sβ,
(α,3) ∀β ≤ α we have Xhα ⊆ Xhβ ,
(α,4) ∀n ∈ Sα we have {hβ(n) : β ≤ α} is a nested increasing family.

Base case: for h0 := h ∈ H, P(0) is immediate.
IH: inductive hypothesis, ∀β < α, P(β) holds.
Inductive step: for α a successor ordinal, P(α) is immediate.
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Proof. An ordinal sequence.

Inductive step: now suppose α is a limit ordinal.

We have Sα := ∩β<αSβ giving, ∀β ≤ α, Sα ⊆ Sβ. Hence (α,2) holds.

Also ∀β < α we have 0 ∈ Sβ by (β,1.1). So 0 ∈ Sα i.e. (α,1.1) holds.

We now show (α,1.2) as follows.
(1*) For n ∈ Sα\{0}, {hβ(n) : β < α} is a nested increasing family of

open discs by (β,1.2) and (β,4).
(2*) Further, {C\hβ(0) : β < α} is a nested decreasing family of closed

discs by (β,1.2) and (β,4).

To proceed we use two lemmas by Heath.
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Proof. An ordinal sequence.

Lemma 1, (Heath)

Lemma
Let F be a non-empty, nested collection of open discs in C, such that
sup{r(E) : E ∈ F} <∞. Then ∪F is an open disc D. Further, for F
ordered by inclusion, r(D) = limE∈F r(E).

Lemma 2, (Heath)

Lemma
Let F be a non-empty, nested collection of closed discs in C, such that
inf{r(E) : E ∈ F} > 0. Then ∩F is a closed disc ∆. Further, for F
ordered by reverse inclusion, r(∆) = limE∈F r(E).
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Proof. An ordinal sequence.

Now for n ∈ Sα\{0} and β < α we have
r(hβ(n)) ≤

∑
m∈Sβ\{0} r(hβ(m)) ≤ r(C\hβ(0))− δhβ ≤ r(C\h(0))− δh,

by (β,1.3) and (2*).

Hence sup{r(hβ(n)) : β < α} ≤ r(C\h(0))− δh.
So by (1*) and lemma 1 we have for n ∈ Sα\{0} that

hα(n) := ∪β<αhβ(n)

is an open disc with,

r(hα(n)) = lim
β<α

r(hβ(n)) ≤ r(C\h(0))− δh.
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Proof. An ordinal sequence.

Now for β < α we have r(C\hβ(0)) ≥ δhβ ≥ δh by (β,1.3).

Hence inf{r(C\hβ(0)) : β < α} ≥ δh.
So by De Morgan, (2*) and lemma 2 we have

C\hα(0) := C\ ∪β<α hβ(0) = ∩β<αC\hβ(0)

is a closed disc with,

r(C\hα(0)) = lim
β<α

r(C\hβ(0)) ≥ δh.

Hence hα(0) is the complement of a closed disc and so (α,1.2) holds.
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Proof. An ordinal sequence.

We now show that (α,4) holds.
By (β,4) we have ∀n ∈ Sα, {hβ(n) : β < α} is a nested increasing
family.
We also have hα(n) := ∪β<αhβ(n) so ∀β ≤ α, hβ(n) ⊆ hα(n). Hence
(α,4) holds.

We have shown that (α,1.1), (α,1.2), (α,2) and (α,4) all hold. For
brevity, (α,1.3) and (α,3) also follow from the inductive hypothesis.

Hence P(α) holds and so by the principle of transfinite induction P(α)
holds for all ordinal numbers α.
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Proof. Closing argument.

Recall that our aim is to prove that for every h ∈ H there is a classical
Swiss cheese h

′ ∈ H with Xh′ ⊆ Xh.

Closing argument using cardinality.
By (α,2) we obtain a nested ordinal sequence (Sα),
N ∪ {0} ⊇ S ⊇ S1 ⊇ S2 ⊇ · · · ⊇ Sω ⊇ Sω+1 ⊇ · · · .

Now setting Sc
α := N\Sα gives a nested ordinal sequence (Sc

α),
Sc ⊆ Sc

1 ⊆ Sc
2 ⊆ · · · ⊆ Sc

ω ⊆ Sc
ω+1 ⊆ · · · ⊆ N.

Lemma

For the Swiss cheese hβ we have,
hβ is classical iff (Sα) has stabalised at β, i.e. Sβ+1 = Sβ.

Proof of lemma, follows directly from property (a) of the map f : H → H
and (β,1.3).
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Proof. Closing argument.

Toward a contradiction suppose for the first uncountable ordinal ω1 that
∀β < ω1, (Sα) has not stabalised at β.
Then for each β < ω1 there exists some nβ+1 ∈ N such that
nβ+1 ∈ Sc

β+1 but nβ+1 6∈ Sc
α ∀ α ≤ β.

Hence since there are uncountable many β < ω1 we have Sc
ω1
⊆ N

uncountable⇒⇐.

Therefore there exists β < ω1 such that (Sα) has stabalised at β and
so by the last lemma hβ is classical.

Now by (β,1) we have hβ ∈ H
and by (β,3) we have Xhβ ⊆ Xh.

In particular, Heath’s theorem on Swiss cheese sets has been proven.
2
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