# A proof concerning Swiss cheese sets.

J. Mason

School of Mathematical Sciences University of Nottingham

March 27 2008

Today we will work through an intuitive proof of a theorem by Heath and Feinstein, but first we need some background. Update: For the final version of this work please see my paper (An inductive proof of the Feinstein-Heath Swiss cheese "classicalisation" Theorem).

Today we will work through an intuitive proof of a theorem by Heath and Feinstein, but first we need some background. Update: For the final version of this work please see my paper (An inductive proof of the Feinstein-Heath Swiss cheese "classicalisation" Theorem).

#### **Definition**

Let *D* be the set of all open discs and complements of closed discs in the complex plane.

Today we will work through an intuitive proof of a theorem by Heath and Feinstein, but first we need some background. Update: For the final version of this work please see my paper (An inductive proof of the Feinstein-Heath Swiss cheese "classicalisation" Theorem).

#### **Definition**

Let *D* be the set of all open discs and complements of closed discs in the complex plane.

(a) A Swiss cheese set X is a compact plane set produced by deleting from the complex plane the elements of a collection  $\tilde{D} := \mathcal{D} \cup \{\mathbb{C} \setminus \Delta\}$ , where  $\mathcal{D}$  is a set of open discs in the complex plane and  $\Delta$  is a closed disc.

Today we will work through an intuitive proof of a theorem by Heath and Feinstein, but first we need some background. Update: For the final version of this work please see my paper (An inductive proof of the Feinstein-Heath Swiss cheese "classicalisation" Theorem).

#### **Definition**

Let D be the set of all open discs and complements of closed discs in the complex plane.

- (a) A Swiss cheese set X is a compact plane set produced by deleting from the complex plane the elements of a collection  $\tilde{D} := \mathcal{D} \cup \{\mathbb{C} \setminus \Delta\}$ , where  $\mathcal{D}$  is a set of open discs in the complex plane and  $\Delta$  is a closed disc.
- (b) A Swiss cheese  $d: S \to D$  is a map from a subset  $S \subseteq \mathbb{N} \cup \{0\}$  in to D such that d(S) is a collection that defines a Swiss cheese set where  $d(S\setminus\{0\})$  is a set of open discs and d(0) is the complement of a closed disc.

When used as a domain, Swiss cheese sets provide a good source of examples in the theory of uniform algebras and rational approximation but we will not discuss that here.

When used as a domain, Swiss cheese sets provide a good source of examples in the theory of uniform algebras and rational approximation but we will not discuss that here.

#### **Definition**

(a) A Swiss cheese  $d: S \to D$  is said to be **classical** if the closures of the elements in d(S) are pairwise disjoint.

When used as a domain, Swiss cheese sets provide a good source of examples in the theory of uniform algebras and rational approximation but we will not discuss that here.

- (a) A Swiss cheese  $d: S \to D$  is said to be **classical** if the closures of the elements in d(S) are pairwise disjoint.
- (b) For a Swiss cheese  $d: S \to D$  we let  $X_d$  denote the Swiss cheese set defined by the collection d(S).

When used as a domain, Swiss cheese sets provide a good source of examples in the theory of uniform algebras and rational approximation but we will not discuss that here.

- (a) A Swiss cheese  $d: S \to D$  is said to be **classical** if the closures of the elements in d(S) are pairwise disjoint.
- (b) For a Swiss cheese  $d: S \to D$  we let  $X_d$  denote the Swiss cheese set defined by the collection d(S).
- (c) A Swiss cheese  $d: S \to D$  is said to have **Heath's condition** when  $\sum_{n \in S \setminus \{0\}} r(d(n)) = r(\Delta) \delta$  for some  $\delta > 0$ , where  $\Delta := \mathbb{C} \setminus d(0)$  and r(d(n)) is the radius of the disc d(n).

When used as a domain, Swiss cheese sets provide a good source of examples in the theory of uniform algebras and rational approximation but we will not discuss that here.

- (a) A Swiss cheese  $d: S \to D$  is said to be **classical** if the closures of the elements in d(S) are pairwise disjoint.
- (b) For a Swiss cheese  $d: S \to D$  we let  $X_d$  denote the Swiss cheese set defined by the collection d(S).
- (c) A Swiss cheese  $d: S \to D$  is said to have **Heath's condition** when  $\sum_{n \in S \setminus \{0\}} r(d(n)) = r(\Delta) \delta$  for some  $\delta > 0$ , where  $\Delta := \mathbb{C} \setminus d(0)$  and r(d(n)) is the radius of the disc d(n).
- (d) Define  $H := \{h : h \text{ is a Swiss cheese with Heath's condition}\}.$

When used as a domain, Swiss cheese sets provide a good source of examples in the theory of uniform algebras and rational approximation but we will not discuss that here.

#### **Definition**

- (a) A Swiss cheese  $d: S \to D$  is said to be **classical** if the closures of the elements in d(S) are pairwise disjoint.
- (b) For a Swiss cheese  $d: S \to D$  we let  $X_d$  denote the Swiss cheese set defined by the collection d(S).
- (c) A Swiss cheese  $d: S \to D$  is said to have **Heath's condition** when  $\sum_{n \in S \setminus \{0\}} r(d(n)) = r(\Delta) \delta$  for some  $\delta > 0$ , where  $\Delta := \mathbb{C} \setminus d(0)$  and r(d(n)) is the radius of the disc d(n).
- (d) Define  $H := \{h : h \text{ is a Swiss cheese with Heath's condition}\}.$

With these definitions to hand we now look at Heath's theorem on Swiss cheese sets which is the central issue for us.

Heath's theorem on Swiss cheese sets.

#### **Theorem**

For every Swiss cheese  $h \in H$  there is a classical Swiss cheese  $h' \in H$  with  $X_{h'} \subseteq X_h$ .

#### Heath's theorem on Swiss cheese sets.

#### **Theorem**

For every Swiss cheese  $h \in H$  there is a classical Swiss cheese  $h' \in H$  with  $X_{h'} \subseteq X_h$ .

The existing Zorn's lemma proof by Heath and Feinstein is elegant. However the proof presented here is perhaps more intuitive giving a nice example of the application of transfinite induction and the use of cardinality in proof.

At the heart of the proof is a completely defined map  $f: H \to H$  which we now define case by case.

At the heart of the proof is a completely defined map  $f: H \to H$  which we now define case by case.

(1) If  $h \in H$  is a classical Swiss cheese then define f(h) := h.

At the heart of the proof is a completely defined map  $f: H \to H$  which we now define case by case.

- (1) If  $h \in H$  is a classical Swiss cheese then define f(h) := h.
- (2) If  $h \in H$  is not classical then for  $h : S \to D$  let

$$I:=\{(n,m)\in \mathcal{S}^2: \bar{h}(n)\cap \bar{h}(m)\neq\emptyset, n\neq m\}.$$

At the heart of the proof is a completely defined map  $f: H \to H$  which we now define case by case.

- (1) If  $h \in H$  is a classical Swiss cheese then define f(h) := h.
- (2) If  $h \in H$  is not classical then for  $h : S \to D$  let

$$I:=\{(n,m)\in\mathcal{S}^2:\bar{h}(n)\cap\bar{h}(m)\neq\emptyset,n\neq m\}.$$

We then have lexicographic ordering on I given by

$$(n,m) \lesssim (n',m')$$
 iff  $n < n'$  or  $(n = n')$  and  $m \leq m'$ .

Since this is a well-ordering on I, let (n, m) be the minimum element of I and hence note that  $m \neq 0$ .

(2) From the last slide, (n, m) is the minimum in I. Since  $h \in H$  we have  $\sum_{k \in S \setminus \{0\}} r(h(k)) = r(\mathbb{C} \setminus h(0)) - \delta$  for some  $\delta > 0$ .

(2) From the last slide, (n, m) is the minimum in I. Since  $h \in H$  we have  $\sum_{k \in S \setminus \{0\}} r(h(k)) = r(\mathbb{C} \setminus h(0)) - \delta$  for some  $\delta > 0$ .

Now, by a lemma of Heath, there exists  $E \in D$  with  $h(n) \cup h(m) \subseteq E$  such that for  $f(h) : S \setminus \{m\} \to D$ ,

$$f(h)(k) := \begin{cases} h(k) & \text{for } k \neq n \\ E & \text{for } k = n \end{cases}, k \in S \setminus \{m\}$$

we have  $\sum_{k \in S \setminus \{0,m\}} r(f(h)(k)) \le r(\mathbb{C} \setminus f(h)(0)) - \delta$  and so  $f(h) \in H$ .

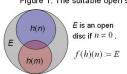
(2) From the last slide, (n, m) is the minimum in I. Since  $h \in H$  we have  $\sum_{k \in S \setminus \{0\}} r(h(k)) = r(\mathbb{C} \setminus h(0)) - \delta$  for some  $\delta > 0$ .

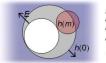
Now, by a lemma of Heath, there exists  $E \in D$  with  $h(n) \cup h(m) \subseteq E$  such that for  $f(h) : S \setminus \{m\} \to D$ ,

$$f(h)(k) := \begin{cases} h(k) & \text{for } k \neq n \\ E & \text{for } k = n \end{cases}, k \in S \setminus \{m\}$$

we have  $\sum_{k \in S \setminus \{0,m\}} r(f(h)(k)) \le r(\mathbb{C} \setminus f(h)(0)) - \delta$  and so  $f(h) \in H$ .

Figure 1: The suitable open set  $E \in D$  satisfying Heath's lemma.





E is the open complement of a closed disc if n = 0. f(h)(0) := E

Properties of  $f: H \rightarrow H$ :

#### Properties of $f: H \rightarrow H$ :

(a) Now  $f: H \to H$  is such that for  $h: S \to D \mapsto f(h): S' \to D$  we have  $S' \subseteq S$  with S' = S iff h is classical.

### Properties of $f: H \rightarrow H$ :

- (a) Now  $f: H \to H$  is such that for  $h: S \to D \mapsto f(h): S' \to D$  we have  $S' \subset S$  with S' = S iff h is classical.
- (b) Further, for the Swiss cheese sets given by  $X_h := \mathbb{C} \setminus \bigcup_{n \in S} h(n)$  we have  $X_{f(h)} \subseteq X_h$  noting that for  $n \in S'$  we have  $h(n) \subseteq f(h)(n)$ .

## Properties of $f: H \rightarrow H$ :

- (a) Now  $f: H \to H$  is such that for  $h: S \to D \mapsto f(h): S' \to D$  we have  $S' \subseteq S$  with S' = S iff h is classical.
- (b) Further, for the Swiss cheese sets given by  $X_h := \mathbb{C} \setminus \bigcup_{n \in S} h(n)$  we have  $X_{f(h)} \subseteq X_h$  noting that for  $n \in S'$  we have  $h(n) \subseteq f(h)(n)$ .

Our aim is to prove that for every  $h \in H$  there is a classical Swiss cheese  $h' \in H$  with  $X_{h'} \subseteq X_h$ .

### Properties of $f: H \rightarrow H$ :

- (a) Now  $f: H \to H$  is such that for  $h: S \to D \mapsto f(h): S' \to D$  we have  $S' \subseteq S$  with S' = S iff h is classical.
- (b) Further, for the Swiss cheese sets given by  $X_h := \mathbb{C} \setminus \bigcup_{n \in S} h(n)$  we have  $X_{f(h)} \subseteq X_h$  noting that for  $n \in S'$  we have  $h(n) \subseteq f(h)(n)$ .

Our aim is to prove that for every  $h \in H$  there is a classical Swiss cheese  $h' \in H$  with  $X_{h'} \subseteq X_h$ .

To this end we will use  $f: H \to H$  to construct an ordinal sequence of Swiss cheeses and then apply a cardinality argument to show that this ordinal sequence must stabilise at a classical Swiss cheese.

#### **Notation**

Let  $\omega$  be the first non-finite ordinal and let  $h \in H$ ,  $h : S \to D$ .

#### **Notation**

Let  $\omega$  be the first non-finite ordinal and let  $h \in H$ ,  $h : S \to D$ .

Denote  $h^{\alpha} := f \circ f \circ \cdots \circ f(h)$  applying  $f \alpha$  times for  $\alpha < \omega$  and denote the domain of  $h^{\alpha}$  by  $S_{\alpha}$ .

#### **Notation**

Let  $\omega$  be the first non-finite ordinal and let  $h \in H$ ,  $h : S \to D$ .

Denote  $h^{\alpha} := f \circ f \circ \cdots \circ f(h)$  applying  $f \alpha$  times for  $\alpha < \omega$  and denote the domain of  $h^{\alpha}$  by  $S_{\alpha}$ .

So by the properties of  $f: H \rightarrow H$  we obtain a nested sequence of Swiss cheese sets:

$$X_h \supseteq X_{h^1} \supseteq X_{h^2} \supseteq \cdots$$

#### **Notation**

Let  $\omega$  be the first non-finite ordinal and let  $h \in H$ ,  $h : S \to D$ .

Denote  $h^{\alpha} := f \circ f \circ \cdots \circ f(h)$  applying  $f \alpha$  times for  $\alpha < \omega$  and denote the domain of  $h^{\alpha}$  by  $S_{\alpha}$ .

So by the properties of  $f: H \rightarrow H$  we obtain a nested sequence of Swiss cheese sets:

$$X_h \supseteq X_{h^1} \supseteq X_{h^2} \supseteq \cdots$$

and a corresponding nested sequence of subsets of  $\mathbb{N} \cup \{0\},$  each including 0:

$$S \supseteq S_1 \supseteq S_2 \supseteq \cdots$$
 where  $S_\alpha = S_{\alpha+1}$  iff  $h^\alpha$  is classical.

#### **Notation**

Let  $\omega$  be the first non-finite ordinal and let  $h \in H$ ,  $h : S \to D$ .

Denote  $h^{\alpha} := f \circ f \circ \cdots \circ f(h)$  applying  $f \alpha$  times for  $\alpha < \omega$  and denote the domain of  $h^{\alpha}$  by  $S_{\alpha}$ .

So by the properties of  $f: H \rightarrow H$  we obtain a nested sequence of Swiss cheese sets:

$$X_h \supseteq X_{h^1} \supseteq X_{h^2} \supseteq \cdots$$

and a corresponding nested sequence of subsets of  $\mathbb{N} \cup \{0\},$  each including 0:

$$S \supseteq S_1 \supseteq S_2 \supseteq \cdots$$
 where  $S_\alpha = S_{\alpha+1}$  iff  $h^\alpha$  is classical.

We need to extend these sequences so that they become ordinal sequences that preserve the existing properties.



## Extending the sequence to all ordinals.

#### **Definition**

(a) If  $\alpha$  is a successor ordinal then define  $h^{\alpha} := f(h^{\alpha-1})$ .

## Extending the sequence to all ordinals.

- (a) If  $\alpha$  is a successor ordinal then define  $h^{\alpha} := f(h^{\alpha-1})$ .
- **(b)** If  $\alpha$  is a limit ordinal then define  $h^{\alpha}: S_{\alpha} \to D$  by,

$$n \mapsto \bigcup_{\beta < \alpha} h^{\beta}(n)$$
 with  $S_{\alpha} := \bigcap_{\beta < \alpha} S_{\beta}$ .

## Extending the sequence to all ordinals.

#### **Definition**

- (a) If  $\alpha$  is a successor ordinal then define  $h^{\alpha} := f(h^{\alpha-1})$ .
- **(b)** If  $\alpha$  is a limit ordinal then define  $h^{\alpha}: S_{\alpha} \to D$  by,

$$n \mapsto \bigcup_{\beta < \alpha} h^{\beta}(n)$$
 with  $S_{\alpha} := \bigcap_{\beta < \alpha} S_{\beta}$ .

We need to show that  $h^{\alpha}$  is in H and that it has the required properties. We use transfinite induction.

#### Transfinite induction.

For  $\alpha$  an ordinal number let  $P(\alpha)$  be the proposition that:

#### Transfinite induction.

For  $\alpha$  an ordinal number let  $P(\alpha)$  be the proposition that:

- ( $\alpha$ ,1)  $h^{\alpha} \in H$ , i.e.
  - (α,1.1) 0 ∈  $S_α$ ,
  - ( $\alpha$ ,1.2)  $h^{\alpha}(0)$  is the complement of a closed disc and  $h^{\alpha}(n)$  is an open disc for  $n \in S_{\alpha} \setminus \{0\}$ ,
  - ( $\alpha$ ,1.3)  $h^{\alpha}$  has Heath's condition with parameter  $\delta_{h^{\alpha}} \geq \delta_{h}$ .

#### Transfinite induction.

For  $\alpha$  an ordinal number let  $P(\alpha)$  be the proposition that:

- ( $\alpha$ ,1)  $h^{\alpha} \in H$ , i.e.
  - (α,1.1) 0 ∈  $S_α$ ,
  - ( $\alpha$ ,1.2)  $h^{\alpha}(0)$  is the complement of a closed disc and  $h^{\alpha}(n)$  is an open disc for  $n \in S_{\alpha} \setminus \{0\}$ ,
  - ( $\alpha$ ,1.3)  $h^{\alpha}$  has Heath's condition with parameter  $\delta_{h^{\alpha}} \geq \delta_{h}$ .
- ( $\alpha$ ,2)  $\forall \beta \leq \alpha$  we have  $S_{\alpha} \subseteq S_{\beta}$ ,
- ( $\alpha$ ,3)  $\forall \beta \leq \alpha$  we have  $X_{h^{\alpha}} \subseteq X_{h^{\beta}}$ ,
- ( $\alpha$ ,4)  $\forall n \in S_{\alpha}$  we have  $\{h^{\beta}(n) : \beta \leq \alpha\}$  is a nested increasing family.

#### Transfinite induction.

For  $\alpha$  an ordinal number let  $P(\alpha)$  be the proposition that:

- ( $\alpha$ ,1)  $h^{\alpha} \in H$ , i.e.
  - (α,1.1) 0 ∈  $S_α$ ,
  - ( $\alpha$ ,1.2)  $h^{\alpha}(0)$  is the complement of a closed disc and  $h^{\alpha}(n)$  is an open disc for  $n \in S_{\alpha} \setminus \{0\}$ ,
  - ( $\alpha$ ,1.3)  $h^{\alpha}$  has Heath's condition with parameter  $\delta_{h^{\alpha}} \geq \delta_{h}$ .
- ( $\alpha$ ,2)  $\forall \beta \leq \alpha$  we have  $S_{\alpha} \subseteq S_{\beta}$ ,
- ( $\alpha$ ,3)  $\forall \beta \leq \alpha$  we have  $X_{h^{\alpha}} \subseteq X_{h^{\beta}}$ ,
- ( $\alpha$ ,4)  $\forall n \in S_{\alpha}$  we have  $\{h^{\beta}(n) : \beta \leq \alpha\}$  is a nested increasing family.

Base case: for  $h^0 := h \in H$ , P(0) is immediate.

#### Transfinite induction.

For  $\alpha$  an ordinal number let  $P(\alpha)$  be the proposition that:

- ( $\alpha$ ,1)  $h^{\alpha} \in H$ , i.e.
  - (α,1.1) 0 ∈  $S_α$ ,
  - ( $\alpha$ ,1.2)  $h^{\alpha}(0)$  is the complement of a closed disc and  $h^{\alpha}(n)$  is an open disc for  $n \in S_{\alpha} \setminus \{0\}$ ,
  - ( $\alpha$ ,1.3)  $h^{\alpha}$  has Heath's condition with parameter  $\delta_{h^{\alpha}} \geq \delta_{h}$ .
- ( $\alpha$ ,2)  $\forall \beta \leq \alpha$  we have  $S_{\alpha} \subseteq S_{\beta}$ ,
- ( $\alpha$ ,3)  $\forall \beta \leq \alpha$  we have  $X_{h^{\alpha}} \subseteq X_{h^{\beta}}$ ,
- ( $\alpha$ ,4)  $\forall n \in S_{\alpha}$  we have  $\{h^{\beta}(n) : \beta \leq \alpha\}$  is a nested increasing family.
  - Base case: for  $h^0 := h \in H$ , P(0) is immediate.
  - IH: inductive hypothesis,  $\forall \beta < \alpha$ ,  $P(\beta)$  holds.

#### Transfinite induction.

For  $\alpha$  an ordinal number let  $P(\alpha)$  be the proposition that:

- ( $\alpha$ ,1)  $h^{\alpha} \in H$ , i.e.
  - (α,1.1) 0 ∈  $S_α$ ,
  - ( $\alpha$ ,1.2)  $h^{\alpha}(0)$  is the complement of a closed disc and  $h^{\alpha}(n)$  is an open disc for  $n \in S_{\alpha} \setminus \{0\}$ ,
  - ( $\alpha$ ,1.3)  $h^{\alpha}$  has Heath's condition with parameter  $\delta_{h^{\alpha}} \geq \delta_h$ .
- ( $\alpha$ ,2)  $\forall \beta \leq \alpha$  we have  $S_{\alpha} \subseteq S_{\beta}$ ,
- ( $\alpha$ ,3)  $\forall \beta \leq \alpha$  we have  $X_{h^{\alpha}} \subseteq X_{h^{\beta}}$ ,
- ( $\alpha$ ,4)  $\forall n \in S_{\alpha}$  we have  $\{h^{\beta}(n) : \beta \leq \alpha\}$  is a nested increasing family.
  - Base case: for  $h^0 := h \in H$ , P(0) is immediate.
  - IH: inductive hypothesis,  $\forall \beta < \alpha$ ,  $P(\beta)$  holds.
  - Inductive step: for  $\alpha$  a **successor ordinal**,  $P(\alpha)$  is immediate.



Inductive step: now suppose  $\alpha$  is a **limit ordinal**.

Inductive step: now suppose  $\alpha$  is a **limit ordinal**.

We have  $S_{\alpha} := \bigcap_{\beta < \alpha} S_{\beta}$  giving,  $\forall \beta \leq \alpha$ ,  $S_{\alpha} \subseteq S_{\beta}$ . Hence  $(\alpha,2)$  holds.

Inductive step: now suppose  $\alpha$  is a **limit ordinal**.

We have  $S_{\alpha} := \bigcap_{\beta < \alpha} S_{\beta}$  giving,  $\forall \beta \leq \alpha$ ,  $S_{\alpha} \subseteq S_{\beta}$ . Hence  $(\alpha,2)$  holds.

Also  $\forall \beta < \alpha$  we have  $0 \in S_{\beta}$  by  $(\beta, 1.1)$ . So  $0 \in S_{\alpha}$  i.e.  $(\alpha, 1.1)$  holds.

Inductive step: now suppose  $\alpha$  is a **limit ordinal**.

We have  $S_{\alpha} := \bigcap_{\beta < \alpha} S_{\beta}$  giving,  $\forall \beta \leq \alpha$ ,  $S_{\alpha} \subseteq S_{\beta}$ . Hence  $(\alpha,2)$  holds.

Also  $\forall \beta < \alpha$  we have  $0 \in S_{\beta}$  by  $(\beta, 1.1)$ . So  $0 \in S_{\alpha}$  i.e.  $(\alpha, 1.1)$  holds.

#### We now show ( $\alpha$ ,1.2) as follows.

- (1\*) For  $n \in S_{\alpha} \setminus \{0\}$ ,  $\{h^{\beta}(n) : \beta < \alpha\}$  is a nested increasing family of open discs by  $(\beta, 1.2)$  and  $(\beta, 4)$ .
- (2\*) Further,  $\{\mathbb{C}\setminus h^{\beta}(0):\beta<\alpha\}$  is a nested decreasing family of closed discs by  $(\beta,1.2)$  and  $(\beta,4)$ .

Inductive step: now suppose  $\alpha$  is a **limit ordinal**.

We have  $S_{\alpha} := \bigcap_{\beta < \alpha} S_{\beta}$  giving,  $\forall \beta \leq \alpha$ ,  $S_{\alpha} \subseteq S_{\beta}$ . Hence  $(\alpha,2)$  holds.

Also  $\forall \beta < \alpha$  we have  $0 \in S_{\beta}$  by  $(\beta, 1.1)$ . So  $0 \in S_{\alpha}$  i.e.  $(\alpha, 1.1)$  holds.

#### We now show ( $\alpha$ ,1.2) as follows.

- (1\*) For  $n \in S_{\alpha} \setminus \{0\}$ ,  $\{h^{\beta}(n) : \beta < \alpha\}$  is a nested increasing family of open discs by  $(\beta, 1.2)$  and  $(\beta, 4)$ .
- (2\*) Further,  $\{\mathbb{C}\setminus h^{\beta}(0):\beta<\alpha\}$  is a nested decreasing family of closed discs by  $(\beta,1.2)$  and  $(\beta,4)$ .

To proceed we use two lemmas by Heath.

Lemma 1, (Heath)

#### Lemma

Let  $\mathcal F$  be a non-empty, nested collection of open discs in  $\mathbb C$ , such that  $\sup\{r(E): E\in \mathcal F\}<\infty$ . Then  $\cup \mathcal F$  is an open disc D. Further, for  $\mathcal F$  ordered by inclusion,  $r(D)=\lim_{E\in \mathcal F} r(E)$ .

Lemma 1, (Heath)

#### Lemma

Let  $\mathcal F$  be a non-empty, nested collection of open discs in  $\mathbb C$ , such that  $\sup\{r(E): E\in \mathcal F\}<\infty$ . Then  $\cup \mathcal F$  is an open disc D. Further, for  $\mathcal F$  ordered by inclusion,  $r(D)=\lim_{E\in \mathcal F} r(E)$ .

Lemma 2, (Heath)

#### Lemma

Let  $\mathcal F$  be a non-empty, nested collection of closed discs in  $\mathbb C$ , such that  $\inf\{r(E): E\in \mathcal F\}>0$ . Then  $\cap \mathcal F$  is a closed disc  $\Delta$ . Further, for  $\mathcal F$  ordered by reverse inclusion,  $r(\Delta)=\lim_{E\in \mathcal F} r(E)$ .

Now for  $n \in S_{\alpha} \setminus \{0\}$  and  $\beta < \alpha$  we have  $r(h^{\beta}(n)) \leq \sum_{m \in S_{\beta} \setminus \{0\}} r(h^{\beta}(m)) \leq r(\mathbb{C} \setminus h^{\beta}(0)) - \delta_{h^{\beta}} \leq r(\mathbb{C} \setminus h(0)) - \delta_{h}$ , by  $(\beta, 1.3)$  and  $(2^*)$ .

Now for  $n \in S_{\alpha} \setminus \{0\}$  and  $\beta < \alpha$  we have  $r(h^{\beta}(n)) \leq \sum_{m \in S_{\beta} \setminus \{0\}} r(h^{\beta}(m)) \leq r(\mathbb{C} \setminus h^{\beta}(0)) - \delta_{h^{\beta}} \leq r(\mathbb{C} \setminus h(0)) - \delta_{h}$ , by  $(\beta, 1.3)$  and  $(2^*)$ .

Hence  $\sup\{r(h^{\beta}(n)): \beta < \alpha\} \le r(\mathbb{C} \setminus h(0)) - \delta_h$ . So by (1\*) and lemma 1 we have for  $n \in S_{\alpha} \setminus \{0\}$  that

$$h^{\alpha}(n) := \cup_{\beta < \alpha} h^{\beta}(n)$$

is an open disc with,

$$r(h^{\alpha}(n)) = \lim_{\beta < \alpha} r(h^{\beta}(n)) \le r(\mathbb{C} \backslash h(0)) - \delta_h.$$

Now for  $\beta < \alpha$  we have  $r(\mathbb{C} \setminus h^{\beta}(0)) \ge \delta_{h^{\beta}} \ge \delta_h$  by  $(\beta, 1.3)$ .

Now for  $\beta < \alpha$  we have  $r(\mathbb{C} \setminus h^{\beta}(0)) \ge \delta_{h^{\beta}} \ge \delta_h$  by  $(\beta, 1.3)$ .

Hence  $\inf\{r(\mathbb{C}\backslash h^{\beta}(0)): \beta<\alpha\}\geq \delta_h$ .

So by De Morgan, (2\*) and lemma 2 we have

$$\mathbb{C}\backslash h^{\alpha}(0):=\mathbb{C}\backslash \cup_{\beta<\alpha} h^{\beta}(0)=\cap_{\beta<\alpha}\mathbb{C}\backslash h^{\beta}(0)$$

is a closed disc with,

$$r(\mathbb{C}\backslash h^{\alpha}(0))=\lim_{eta<\alpha}r(\mathbb{C}\backslash h^{eta}(0))\geq\delta_{h}.$$

Hence  $h^{\alpha}(0)$  is the complement of a closed disc and so  $(\alpha,1.2)$  holds.

We now show that  $(\alpha,4)$  holds.

By  $(\beta,4)$  we have  $\forall n \in S_{\alpha}$ ,  $\{h^{\beta}(n) : \beta < \alpha\}$  is a nested increasing family.

We also have  $h^{\alpha}(n) := \bigcup_{\beta < \alpha} h^{\beta}(n)$  so  $\forall \beta \leq \alpha$ ,  $h^{\beta}(n) \subseteq h^{\alpha}(n)$ . Hence  $(\alpha,4)$  holds.

We now show that  $(\alpha,4)$  holds.

By  $(\beta,4)$  we have  $\forall n \in S_{\alpha}$ ,  $\{h^{\beta}(n) : \beta < \alpha\}$  is a nested increasing family.

We also have  $h^{\alpha}(n) := \bigcup_{\beta < \alpha} h^{\beta}(n)$  so  $\forall \beta \leq \alpha$ ,  $h^{\beta}(n) \subseteq h^{\alpha}(n)$ . Hence  $(\alpha,4)$  holds.

We have shown that  $(\alpha,1.1)$ ,  $(\alpha,1.2)$ ,  $(\alpha,2)$  and  $(\alpha,4)$  all hold. For brevity,  $(\alpha,1.3)$  and  $(\alpha,3)$  also follow from the inductive hypothesis.

We now show that  $(\alpha,4)$  holds.

By  $(\beta,4)$  we have  $\forall n \in S_{\alpha}$ ,  $\{h^{\beta}(n) : \beta < \alpha\}$  is a nested increasing family.

We also have  $h^{\alpha}(n) := \bigcup_{\beta < \alpha} h^{\beta}(n)$  so  $\forall \beta \leq \alpha$ ,  $h^{\beta}(n) \subseteq h^{\alpha}(n)$ . Hence  $(\alpha,4)$  holds.

We have shown that  $(\alpha,1.1)$ ,  $(\alpha,1.2)$ ,  $(\alpha,2)$  and  $(\alpha,4)$  all hold. For brevity,  $(\alpha,1.3)$  and  $(\alpha,3)$  also follow from the inductive hypothesis.

Hence  $P(\alpha)$  holds and so by the principle of transfinite induction  $P(\alpha)$  holds for all ordinal numbers  $\alpha$ .

Recall that our aim is to prove that for every  $h \in H$  there is a classical Swiss cheese  $h' \in H$  with  $X_{h'} \subseteq X_h$ .

Recall that our aim is to prove that for every  $h \in H$  there is a classical Swiss cheese  $h' \in H$  with  $X_{h'} \subseteq X_h$ .

#### Closing argument using cardinality.

By  $(\alpha,2)$  we obtain a nested ordinal sequence  $(S_{\alpha})$ ,

$$\mathbb{N} \cup \{0\} \supseteq S \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_{\omega} \supseteq S_{\omega+1} \supseteq \cdots$$

Recall that our aim is to prove that for every  $h \in H$  there is a classical Swiss cheese  $h' \in H$  with  $X_{h'} \subseteq X_h$ .

#### Closing argument using cardinality.

By  $(\alpha,2)$  we obtain a nested ordinal sequence  $(S_{\alpha})$ ,

$$\mathbb{N} \cup \{0\} \supseteq S \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_{\omega} \supseteq S_{\omega+1} \supseteq \cdots$$

Now setting  $S_{\alpha}^c := \mathbb{N} \setminus S_{\alpha}$  gives a nested ordinal sequence  $(S_{\alpha}^c)$ ,  $S^c \subseteq S_1^c \subseteq S_2^c \subseteq \cdots \subseteq S_{\alpha}^c \subseteq S_{\alpha+1}^c \subseteq \cdots \subseteq \mathbb{N}$ .

Recall that our aim is to prove that for every  $h \in H$  there is a classical Swiss cheese  $h' \in H$  with  $X_{h'} \subseteq X_h$ .

#### Closing argument using cardinality.

By  $(\alpha,2)$  we obtain a nested ordinal sequence  $(S_{\alpha})$ ,

$$\mathbb{N} \cup \{0\} \supseteq S \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_{\omega} \supseteq S_{\omega+1} \supseteq \cdots.$$

Now setting  $S_{\alpha}^c := \mathbb{N} \setminus S_{\alpha}$  gives a nested ordinal sequence  $(S_{\alpha}^c)$ ,  $S^c \subseteq S_1^c \subseteq S_2^c \subseteq \cdots \subseteq S_{\omega}^c \subseteq S_{\omega+1}^c \subseteq \cdots \subseteq \mathbb{N}$ .

#### Lemma

For the Swiss cheese  $h^{\beta}$  we have,  $h^{\beta}$  is classical **iff**  $(S_{\alpha})$  has stabalised at  $\beta$ , i.e.  $S_{\beta+1} = S_{\beta}$ .

Proof of lemma, follows directly from property (a) of the map  $f: H \to H$  and  $(\beta, 1.3)$ .



Toward a contradiction suppose for the first uncountable ordinal  $\omega_1$  that  $\forall \beta < \omega_1$ ,  $(S_\alpha)$  has not stabalised at  $\beta$ .

Then for each  $\beta < \omega_1$  there exists some  $n_{\beta+1} \in \mathbb{N}$  such that  $n_{\beta+1} \in S_{\beta+1}^c$  but  $n_{\beta+1} \notin S_{\alpha}^c \ \forall \ \alpha \leq \beta$ .

Toward a contradiction suppose for the first uncountable ordinal  $\omega_1$  that  $\forall \beta < \omega_1$ ,  $(S_\alpha)$  has not stabalised at  $\beta$ .

Then for each  $\beta < \omega_1$  there exists some  $n_{\beta+1} \in \mathbb{N}$  such that  $n_{\beta+1} \in S_{\beta+1}^c$  but  $n_{\beta+1} \notin S_{\alpha}^c \ \forall \ \alpha \leq \beta$ .

Hence since there are uncountable many  $\beta < \omega_1$  we have  $S_{\omega_1}^c \subseteq \mathbb{N}$  uncountable  $\Rightarrow \Leftarrow$ .

Toward a contradiction suppose for the first uncountable ordinal  $\omega_1$  that  $\forall \beta < \omega_1$ ,  $(S_\alpha)$  has not stabalised at  $\beta$ .

Then for each  $\beta < \omega_1$  there exists some  $n_{\beta+1} \in \mathbb{N}$  such that  $n_{\beta+1} \in S_{\beta+1}^c$  but  $n_{\beta+1} \notin S_{\alpha}^c \ \forall \ \alpha \leq \beta$ .

Hence since there are uncountable many  $\beta < \omega_1$  we have  $S_{\omega_1}^c \subseteq \mathbb{N}$  uncountable  $\Rightarrow \Leftarrow$ .

Therefore there exists  $\beta < \omega_1$  such that  $(S_\alpha)$  has stabalised at  $\beta$  and so by the last lemma  $h^\beta$  is classical.

Toward a contradiction suppose for the first uncountable ordinal  $\omega_1$  that  $\forall \beta < \omega_1$ ,  $(S_\alpha)$  has not stabalised at  $\beta$ .

Then for each  $\beta < \omega_1$  there exists some  $n_{\beta+1} \in \mathbb{N}$  such that  $n_{\beta+1} \in S_{\beta+1}^c$  but  $n_{\beta+1} \notin S_{\alpha}^c \ \forall \ \alpha \leq \beta$ .

Hence since there are uncountable many  $\beta < \omega_1$  we have  $S_{\omega_1}^c \subseteq \mathbb{N}$  uncountable  $\Rightarrow \Leftarrow$ .

Therefore there exists  $\beta < \omega_1$  such that  $(S_\alpha)$  has stabalised at  $\beta$  and so by the last lemma  $h^\beta$  is classical.

Now by  $(\beta,1)$  we have  $h^{\beta} \in H$  and by  $(\beta,3)$  we have  $X_{h^{\beta}} \subseteq X_h$ .

Toward a contradiction suppose for the first uncountable ordinal  $\omega_1$  that  $\forall \beta < \omega_1$ ,  $(S_\alpha)$  has not stabalised at  $\beta$ .

Then for each  $\beta < \omega_1$  there exists some  $n_{\beta+1} \in \mathbb{N}$  such that  $n_{\beta+1} \in S_{\beta+1}^c$  but  $n_{\beta+1} \notin S_{\alpha}^c \ \forall \ \alpha \leq \beta$ .

Hence since there are uncountable many  $\beta < \omega_1$  we have  $S_{\omega_1}^c \subseteq \mathbb{N}$  uncountable  $\Rightarrow \Leftarrow$ .

Therefore there exists  $\beta < \omega_1$  such that  $(S_\alpha)$  has stabalised at  $\beta$  and so by the last lemma  $h^\beta$  is classical.

Now by  $(\beta,1)$  we have  $h^{\beta} \in H$  and by  $(\beta,3)$  we have  $X_{h^{\beta}} \subseteq X_h$ .

In particular, Heath's theorem on Swiss cheese sets has been proven.  $\hfill\Box$